Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants.
نویسندگان
چکیده
Spectral tuning by visual pigments involves the modulation of the physical properties of the chromophore (11-cis-retinal) by amino acid side chains that compose the chromophore-binding pocket. We identified 12 amino acid residues in the human blue cone pigment that might induce the required green-to-blue opsin shift. The simultaneous substitution of nine of these sites in rhodopsin (M86L, G90S, A117G, E122L, A124T, W265Y, A292S, A295S, and A299C) shifted the absorption maximum from 500 to 438 nm, accounting for 2,830 cm-1, or 80%, of the opsin shift between rhodopsin and the blue cone pigment. Raman spectroscopy of mutant pigments shows that the dielectric character and architecture of the chromophore-binding pocket are specifically altered. An increase in the number of dipolar side chains near the protonated Schiff base of retinal increases the ground-excited state energy gap via long range dipole-dipole Coulomb interaction. In addition, the W265Y substitution causes a decrease in solvent polarizability near the chromophore ring structure. Finally, two substitutions on transmembrane helix 3 (A117G and E122L) act in combination with the other substitutions to alter the binding-pocket structure, resulting in stronger interaction of the protonated Schiff base group with the surrounding dipolar groups and the counterion. Taken together, these results identify the amino acid side chains and the underlying physical mechanisms responsible for a majority of the opsin shift in blue visual pigments.
منابع مشابه
Spectral tuning of rhodopsin and visual cone pigments.
Retinal is the light-absorbing biochromophore responsible for the activation of vision pigments and light-driven ion pumps. Nature has evolved molecular tuning mechanisms that significantly shift the optical properties of the retinal pigments to enable their absorption of visible light. Using large-scale quantum chemical calculations at the density functional theory level combined with frozen d...
متن کاملMechanisms of spectral tuning in the mouse green cone pigment.
Diversification of cone pigment spectral sensitivities during evolution is a prerequisite for the development of color vision. Previous studies have identified two naturally occurring mechanisms that produce variation among vertebrate pigments by red-shifting visual pigment absorbance: addition of hydroxyl groups to the putative chromophore binding pocket and binding of chloride to a putative e...
متن کاملPrimary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments.
The chicken retina contains rhodopsin (a rod visual pigment) and four kinds of cone visual pigments. The primary structures of chicken red (iodopsin) and rhodopsin have been determined previously. Here we report isolation of three cDNA clones encoding additional pigments from a chicken retinal cDNA library. Based on the partial amino acid sequences of the purified chicken visual pigments togeth...
متن کاملTemperature effects on spectral properties of red and green rods in toad retina.
Temperature effects on spectral properties of the two types of rod photoreceptors in toad retina, "red" and "green" rods, were studied in the range 0-38 degrees C. Absorbance spectra of the visual pigments were recorded by single-cell microspectrophotometry (MSP) and spectral sensitivities of red rods were measured by electroretinogram (ERG) recording across the isolated retina. The red-rod vis...
متن کاملAdaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation.
Most vertebrate retinas contain a single type of rod for scotopic vision and multiple types of cones for photopic and color vision. The retinas of certain amphibian species uniquely contain two types of rods: red rods, which express rhodopsin, and green rods, which express a blue-sensitive cone pigment (M1/SWS2 group). Spontaneous activation of rhodopsin induced by thermal isomerization of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 38 شماره
صفحات -
تاریخ انتشار 1998